

STA4550P Ka Series 500W Ultralinear Ka-Band Antenna Mount HPA

FEATURES

Ultralinear Lightweight High Efficiency Broadband

STA4550P Ka series 500W Antenna Mount HPA

The STA4550P Ka series HPA provides ultra linear, high efficiency performance in a compact, lightweight, rugged, weatherproof, antenna mount enclosure. The advanced packaging and cooling techniques enable the unit to operate in extreme environmental conditions from direct rain to direct sunlight. The amplifiers can be simply deployed anywhere in the world, are user-friendly and incorporate a comprehensive remote control facility as standard, including RS485, RS232 and Ethernet options.

The HPA incorporates a high efficiency multi-collector TWT powered by an advanced power supply built on over 30 years of experience in the design and manufacture of satellite amplifiers.

The company's products have an enviable reputation for performance, robust quality and reliable service.

The STA4550P Ka is available with a wide range of options and accessories, backed by worldwide technical support.

Features

- Advanced cooling design enables operation at +60°C and in direct sunlight
- Weatherproof antenna mount construction allows exposed mounting
- Ethernet/SMP/Webpage GUI interfaces
- Broadband high efficiency operation

- CE complaint
- Wide input voltage range can operate from mains supplies worldwide
- Redundant control contains control and drive circuits for 1:1 redundancy
- Stand-alone setting automatically sequences to transmit mode
- Wide range of accessories including: Controllers, waveguide networks, cable assemblies

RF Performance:

Frequency		
KA1 KA2	27.5 – 30.0 GHz	
	27.0 – 30.0 GHz	
KA3	28.0 – 30.0 GHz	
KA4	30.0 – 31.0 GHz	
Bandwidth	2500 MHz	
Output Power	(for load VSWR \leq 1.5:1)	
Output Power TWT Power, PEAK	(for load VSWR ≤ 1.5:1) 57.0 dBm (500 W)	
•	,	
TWT Power, PEAK	57.0 dBm (500 W)	

Ga	ir
----	----

TWT Power, PEAK Rated (flange) 53.4 dBm (500 W) Rated (flange) 53.4 dBm (220 W) typical Linear, P_{LIN} 53.4 dBm (220 W) Gain Gain ≥ 70 dB Variation, 250 MHz, $\Delta G_{250MHz} \leq 1.0$ dB peak-peak Variation, 1000 MHz, $\Delta G_{1000MHz} \leq 2.5$ dB peak-peak Slope, $\Delta G_{SLOPE} = \pm 0.04$ dB/MHz Gain Stability vs. Time ± 0.25 dB/24 hours @ constant drive & temp Gain Stability vs. Temperature ± 1.0 dB @ constant drive & frequency Adjustment range, G_{ADJ} 30.0 dB typical Adjustment step size 0.1 dB Linearity AM/PM @ $P_0 \leq P_{LIN} - 1$ dB $\leq 1.5^\circ$ /dB Inter-modulations (IMD) 2-tone ≤ -28 dBc @ $P_0 \leq P_{LIN} - 1$ dB Spectral Re-growth (SR) ≤ -30 dBc @ $P_0 \leq P_{LIN} - 1$ dB Noise Power Ratio (NPR) ≤ -19 dBc @ $P_0 \leq P_{LIN} - 1$ dB Input VSWR (Return Loss) $\leq 1.3:1$ (17.7 dB) Output VSWR (no damage) $\leq 2.0:1$ (9.5 dB) Harmonic 2^{nd} & 3^{rd} ≤ -60 dBc	
Linear, P_{LIN} 53.4 dBm (220 W) Gain Gain P_{LIN} 53.4 dBm (220 W) Gain Gain P_{LIN} 53.4 dBm (220 W) Solve P_{LIN} 53.4 dBm (220 W) Solve P_{LIN} 53.4 dBm (220 W) Gain Stability Vs. P_{LIN} 51.0 dB peak-peak Slope, P_{LIN} 50.25 dB peak-peak Slope, P_{LIN} 50.25 dB/24 hours Gain Stability Vs. Time P_{LIN} 50.25 dB/24 hours Gain Stability Vs. Temperature P_{LIN} 51.0 dB Gain Stability Vs. Temperature P_{LIN} 61.0 dB Gain Stability Vs. Temperature P_{LI	
Gain Gain $\Rightarrow 70 \text{ dB}$ Variation, 250 MHz, $\triangle G_{250\text{MHz}} \leq 1.0 \text{ dB peak-peak}$ Variation, 1000 MHz, $\triangle G_{1000\text{MHz}} \leq 2.5 \text{ dB peak-peak}$ Slope, $\triangle G_{\text{SLOPE}} = \pm 0.04 \text{ dB/MHz}$ Gain Stability vs. Time @ constant drive & temp Gain Stability vs. Temperature $\pm 1.0 \text{ dB}$ @ constant drive & frequency Adjustment range, $G_{\text{ADJ}} = 0.1 \text{ dB}$ Adjustment step size O.1 dB Linearity AM/PM @ $P_{\text{O}} \leq P_{\text{LIN}} - 1 \text{ dB} \leq 1.5^{\circ}/\text{dB}$ Inter-modulations (IMD) 2-tone Spectral Re-growth (SR) Noise Power Ratio (NPR) $\leq -19 \text{ dBc} \otimes P_{\text{O}} \leq P_{\text{LIN}} - 1 \text{ dB}$ Noise Power Ratio (NPR) $\leq -19 \text{ dBc} \otimes P_{\text{O}} \leq P_{\text{LIN}} - 1 \text{ dB}$ Input VSWR (Return Loss) $\leq 1.3:1 (17.7 \text{ dB})$ Output VSWR (no damage) $\leq 2.0:1 (9.5 \text{ dB})$	
Gain $\geq 70 \text{ dB}$ Variation, 250 MHz, $\Delta G_{250\text{MHz}} \leq 1.0 \text{ dB peak-peak}$ Variation, 1000 MHz, $\Delta G_{1000\text{MHz}} \leq 2.5 \text{ dB peak-peak}$ Slope, $\Delta G_{\text{SLOPE}} = \pm 0.04 \text{ dB/MHz}$ Gain Stability vs. Time $\pm 0.25 \text{ dB/24}$ hours @constant drive & temp Gain Stability vs. Temperature $\pm 1.0 \text{ dB}$ @ constant drive & frequency Adjustment range, $G_{\text{ADJ}} = 0.1 \text{ dB}$ Linearity AM/PM @ $P_{\text{O}} \leq P_{\text{LIN}} - 1 \text{ dB} = 1.5^{\circ}/\text{dB}$ Inter-modulations (IMD) 2-tone $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Spectral Re-growth (SR) $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Noise Power Ratio (NPR) $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Input VSWR (Return Loss) $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Output VSWR (Return Loss) $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Load VSWR (no damage) $= 0.1 \text{ dB} = 0.1 \text{ dB}$	
Gain $\geq 70 \text{ dB}$ Variation, 250 MHz, $\Delta G_{250\text{MHz}} \leq 1.0 \text{ dB peak-peak}$ Variation, 1000 MHz, $\Delta G_{1000\text{MHz}} \leq 2.5 \text{ dB peak-peak}$ Slope, $\Delta G_{\text{SLOPE}} = \pm 0.04 \text{ dB/MHz}$ Gain Stability vs. Time $\pm 0.25 \text{ dB/24}$ hours @constant drive & temp Gain Stability vs. Temperature $\pm 1.0 \text{ dB}$ @ constant drive & frequency Adjustment range, $G_{\text{ADJ}} = 0.1 \text{ dB}$ Linearity AM/PM @ $P_{\text{O}} \leq P_{\text{LIN}} - 1 \text{ dB} = 1.5^{\circ}/\text{dB}$ Inter-modulations (IMD) 2-tone $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Spectral Re-growth (SR) $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Noise Power Ratio (NPR) $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Input VSWR (Return Loss) $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Output VSWR (Return Loss) $= 0.1 \text{ dB} = 0.1 \text{ dB}$ Load VSWR (no damage) $= 0.1 \text{ dB} = 0.1 \text{ dB}$	
Variation, 250 MHz, $\Delta G_{250MHz} \leq 1.0$ dB peak-peak Variation, 1000 MHz, $\Delta G_{1000MHz} \leq 2.5$ dB peak-peak Slope, $\Delta G_{SLOPE} = \pm 0.04$ dB/MHz Gain Stability vs. Time ± 0.25 dB/24 hours @constant drive & temp Gain Stability vs. Temperature ± 1.0 dB @ constant drive & frequency Adjustment range, $G_{ADJ} = 0.1$ dB \text{distance} \tex	
$\label{eq:Variation, 1000 MHz, $\Delta G_{1000MHz}$ $\leq 2.5 \ dB peak-peak$ $Slope, ΔG_{SLOPE} $\pm 0.04 \ dB/MHz$ $Gain Stability vs. Time $\pm 0.25 \ dB/24$ hours $@ constant drive & temp$ $$Gain Stability vs. Temperature $\pm 1.0 \ dB$ $@ constant drive & frequency$ $Adjustment range, G_{ADJ} $30.0 \ dB typical $Adjustment step size$ $0.1 \ dB$ $$Linearity$ $$AM/PM @ P_0 $\leq P_{LIN}$ - 1 dB$ $\leq 1.5^\circ/dB$ $$Inter-modulations (IMD)$ $2-28 \ dBc @ P_0 $\leq P_{LIN}$ - 1 dB$ $$Spectral Re-growth (SR)$ $\leq -30 \ dBc @ P_0 $\leq P_{LIN}$ - 1 dB$ $$Noise Power Ratio (NPR)$ $\leq -19 \ dBc @ P_0 $\leq P_{LIN}$ - 1 dB$ $$Input VSWR (Return Loss)$ $\leq 1.3:1 (17.7 \ dB)$ $$Output VSWR (Return Loss)$ $\leq 1.3:1 (17.7 \ dB)$ $$Load VSWR (no damage)$ $\leq 2.0:1 (9.5 \ dB)$ $$$	
Slope, ΔG_{SLOPE} $\pm 0.04 \text{ dB/MHz}$ Gain Stability vs. Time \oplus constant drive & temp Gain Stability vs. Temperature $\pm 1.0 \text{ dB}$ @ constant drive & frequency Adjustment range, G_{ADJ} 30.0 dB typical Adjustment step size 0.1 dB Linearity AM/PM @ $P_O \leq P_{LIN} - 1 \text{ dB} \leq 1.5^{\circ}/\text{dB}$ Inter-modulations (IMD) 2-tone $\leq -28 \text{ dBc}$ @ $P_O \leq P_{LIN} - 1 \text{ dB}$ Spectral Re-growth (SR) $\leq -30 \text{ dBc}$ @ $P_O \leq P_{LIN} - 1 \text{ dB}$ Noise Power Ratio (NPR) $\leq -19 \text{ dBc}$ @ $P_O \leq P_{LIN} - 1 \text{ dB}$ Input VSWR (Return Loss) $\leq 1.3:1 (17.7 \text{ dB})$ Output VSWR (Return Loss) $\leq 1.3:1 (17.7 \text{ dB})$ Load VSWR (no damage) $\leq 2.0:1 (9.5 \text{ dB})$	
Gain Stability vs. Time @constant drive & temp Gain Stability vs. Temperature $\pm 1.0 \text{ dB}$ @ constant drive & frequency Adjustment range, G_{ADJ} 30.0 dB typical Adjustment step size 0.1 dB Linearity AM/PM @ $P_O \le P_{LIN} - 1 \text{ dB}$ $\le 1.5^\circ / \text{dB}$ Inter-modulations (IMD) 2-tone $\le -28 \text{ dBc}$ @ $P_O \le P_{LIN} - 1 \text{ dB}$ Spectral Re-growth (SR) $\le -30 \text{ dBc}$ @ $P_O \le P_{LIN} - 1 \text{ dB}$ Noise Power Ratio (NPR) $\le -19 \text{ dBc}$ @ $P_O \le P_{LIN} - 1 \text{ dB}$ Input VSWR (Return Loss) $\le 1.3:1 (17.7 \text{ dB})$ Output VSWR (no damage) $\le 2.0:1 (9.5 \text{ dB})$	
@ constant drive & frequency Adjustment range, G_{ADJ}	
Adjustment step size 0.1 dB Linearity $AM/PM @ P_O \le P_{LIN} - 1 dB \qquad \le 1.5^\circ / dB$ Inter-modulations (IMD) 2-tone $ \le -28 \ dBc @ P_O \le P_{LIN} - 1 \ dB$ Spectral Re-growth (SR) $ \le -30 \ dBc @ P_O \le P_{LIN} - 1 \ dB$ Noise Power Ratio (NPR) $ \le -19 \ dBc @ P_O \le P_{LIN} - 1 \ dB$ Input VSWR (Return Loss) $ \le 1.3:1 \ (17.7 \ dB)$ Output VSWR (Return Loss) $ \le 1.3:1 \ (17.7 \ dB)$ Load VSWR (no damage) $ \le 2.0:1 \ (9.5 \ dB)$	
Linearity $AM/PM @ P_{O} \leq P_{LIN} - 1 dB \qquad \leq 1.5^{\circ}/dB$ $Inter-modulations (IMD)$ $2\text{-tone} \qquad \leq -28 \text{ dBc } @ P_{O} \leq P_{LIN} - 1 \text{ dB}$ $Spectral \text{ Re-growth (SR)} \qquad \leq -30 \text{ dBc } @ P_{O} \leq P_{LIN} - 1 \text{ dB}$ $Noise Power Ratio (NPR) \qquad \leq -19 \text{ dBc } @ P_{O} \leq P_{LIN} - 1 \text{ dB}$ $Input VSWR (Return Loss) \qquad \leq 1.3:1 (17.7 \text{ dB})$ $Output VSWR (Return Loss) \qquad \leq 1.3:1 (17.7 \text{ dB})$ $Load VSWR (no damage) \qquad \leq 2.0:1 (9.5 \text{ dB})$	
$AM/PM @ P_O \leq P_{LIN} - 1 dB \qquad \leq 1.5^\circ / dB$ Inter-modulations (IMD) 2-tone $ \leq -28 \ dBc @ P_O \leq P_{LIN} - 1 \ dB$ Spectral Re-growth (SR) $ \leq -30 \ dBc @ P_O \leq P_{LIN} - 1 \ dB$ Noise Power Ratio (NPR) $ \leq -19 \ dBc @ P_O \leq P_{LIN} - 1 \ dB$ Input VSWR (Return Loss) $ \leq 1.3:1 \ (17.7 \ dB)$ Output VSWR (Return Loss) $ \leq 1.3:1 \ (17.7 \ dB)$ Load VSWR (no damage) $ \leq 2.0:1 \ (9.5 \ dB)$	
$\begin{array}{ll} \text{Inter-modulations (IMD)} \\ \text{2-tone} & \leq -28 \text{ dBc } @ \text{ P}_{\text{O}} \leq \text{ P}_{\text{LIN}} - 1 \text{ dB} \\ \text{Spectral Re-growth (SR)} & \leq -30 \text{ dBc } @ \text{ P}_{\text{O}} \leq \text{ P}_{\text{LIN}} - 1 \text{ dB} \\ \text{Noise Power Ratio (NPR)} & \leq -19 \text{ dBc } @ \text{ P}_{\text{O}} \leq \text{ P}_{\text{LIN}} - 1 \text{ dB} \\ \text{Input VSWR (Return Loss)} & \leq 1.3:1 (17.7 \text{ dB}) \\ \text{Output VSWR (Return Loss)} & \leq 1.3:1 (17.7 \text{ dB}) \\ \text{Load VSWR (no damage)} & \leq 2.0:1 (9.5 \text{ dB}) \\ \end{array}$	
$ \begin{array}{lll} \mbox{2-tone} & \leq -28 \mbox{ dBc } @ P_{O} \leq P_{LIN} -1 \mbox{ dB} \\ \mbox{Spectral Re-growth (SR)} & \leq -30 \mbox{ dBc } @ P_{O} \leq P_{LIN} -1 \mbox{ dB} \\ \mbox{Noise Power Ratio (NPR)} & \leq -19 \mbox{ dBc } @ P_{O} \leq P_{LIN} -1 \mbox{ dB} \\ \mbox{Input VSWR (Return Loss)} & \leq 1.3:1 (17.7 \mbox{ dB}) \\ \mbox{Output VSWR (Return Loss)} & \leq 1.3:1 (17.7 \mbox{ dB}) \\ \mbox{Load VSWR (no damage)} & \leq 2.0:1 (9.5 \mbox{ dB}) \\ \end{array} $	
$\begin{array}{lll} \text{Spectral Re-growth (SR)} & \leq -30 \text{ dBc @ } P_0 \leq P_{\text{LIN}} - 1 \text{ dB} \\ \text{Noise Power Ratio (NPR)} & \leq -19 \text{ dBc @ } P_0 \leq P_{\text{LIN}} - 1 \text{ dB} \\ \\ \text{Input VSWR (Return Loss)} & \leq 1.3:1 \ (17.7 \text{ dB}) \\ \text{Output VSWR (Return Loss)} & \leq 1.3:1 \ (17.7 \text{ dB}) \\ \\ \text{Load VSWR (no damage)} & \leq 2.0:1 \ (9.5 \text{ dB}) \\ \end{array}$	
Noise Power Ratio (NPR) \leq -19 dBc @ P _O \leq P _{LIN} - 1 dB Input VSWR (Return Loss) \leq 1.3:1 (17.7 dB) Output VSWR (Return Loss) \leq 1.3:1 (17.7 dB) Load VSWR (no damage) \leq 2.0:1 (9.5 dB)	
Input VSWR (Return Loss) ≤ 1.3:1 (17.7 dB) Output VSWR (Return Loss) ≤ 1.3:1 (17.7 dB) Load VSWR (no damage) ≤ 2.0:1 (9.5 dB)	
Output VSWR (Return Loss) ≤ 1.3:1 (17.7 dB) Load VSWR (no damage) ≤ 2.0:1 (9.5 dB)	
Load VSWR (no damage) ≤ 2.0:1 (9.5 dB)	
Harmonic 2^{nd} & 3^{rd} \leq -60 dBc	
Noise Power	
Transmit Band (T _x) ≤ -70 dBW/4KHz	
Receive Band (R _x) ≤ -150 dBW/4KHz	
(≤ 21.2 GHz)	
Spurious @ $P_o \le MLP$ $\le -60 dBc$	
Residual AM \leq -50 dBc, f < 10KHz \leq -20(1.5+LOG(frequency KHz))c f = 10KHz to 500KHz \leq -85 dBc >500KHz	Bc.
Phase Noise 10 dB below IESS requirement ≤ - 50 dBc, AC fundamental ≤ - 47 dBc, Sum of all spurs	

Prime Power:

AC Input Voltage	200-240 VAC \pm 10%, single phase 50-60 Hz \pm 5%
Full Load Current	6.8 A max @ 200 VAC
Power Consumption	1050 VA typical 1350 VA maximum
Power Factor	0.98 typical 0.96 minimum

Environmental:

Ambient Temperature Relative Humidity	-40°C to +60°C 100% condensing
Altitude	12,000 ft. with standard adiabatic derating of 2°C/1000 ft., operating
	50,000 ft., non-operating
Shock	15 g peak, 11mSec, 1/2 sine
Vibration	3.2 g rms, 10-500 Hz
Acoustic Noise	65 dBA @ ≥3 ft. from amplifier
Solar Gain	1120 2/m ²

Mechanical:

Dimensions	Request outline
Length	52 cm
Width	26 cm
Height	26 cm
Weight	21 kg typical
RF Input	WR-34
RF Output	WR-34
RF Sample	
AC Input	Amphenol C016 20C003 200 12
Ethernet	RJF71B
M&C Connector	PT07E18-32S (MS3114E-18-32S)

0.01 nsec/MHz, max

0.005 nsec/MHz2, max 0.5 nsec/Peak-Peak, max

Group Delay (any 80 MHz)

Linear

Ripple

Parabolic